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Abstract. A method to obtain exponentially accurate approximations to solutions for Dirichlet problems with
discontinuous boundary data for Laplace’s equation in two dimensions is presented and discussed. Model problems
with circular or rectangular boundaries, whose solutions can be obtained by separation of variables involving
Fourier series, are discussed in detail. First, the boundarygdst@xpressed as the sum of a singular function

Syr, which is a certain linear combination of specially constructed ‘singular basis funcfiyis’and a function,
namely,g — Sy, which is much smoother than the original data. The funcfigpn is constructed so that its
discontinuities, and those of its fir3f derivatives, coincide with the corresponding discontinuitieg ofhe
solutionu to the boundary-value problem is then expressed as the sum of a linear combination of the harmonic
extensiongy, } of {S,}, and a functiorv, which satisfies the boundary condition= g — S‘M. Since the boundary

data forv has at leasds continuous derivatives, the partial sum approximationssfobtained by separation of
variables converge much faster than the corresponding partial sum approximatiengdomally, by lettingv,

the number of terms retained in the solution forbe proportional taVf, a sequence of approximations can be
constructed which converges #oexponentially in the maximum norm, & — oo. In particular, this implies

that, wheng is discontinuous, the unwanted effects of the Gibbs phenomenon can be completely overcome! The
method is illustrated by several examples, and some possible applications to related problems are discussed.
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1. Introduction

Approximate solutions to many classes of boundary-value problems for partial differential
eqguations are often constructed by use of a finite number of terms in a Fourier-series-type
representation of the solution. In practice, this truncation procedure may lead to nonuniformly
valid approximations. In particular, when a function (such as the boundary data of the prob-
lem) being approximated by its Fourier series partial sum has one or more points of simple
discontinuity, Gibbs’s phenomenon is present. This phenomenon typically produces several
‘unwanted’ effects in the partial-sum approximation, including an ‘overshoot’ (by about 18%
in the magnitude of the jump in the function at a point of discontinuity, as well as artificial
oscillations near such a point. Unlike many other partial-sum approximations, the magnitude
of the overshoot isot eliminatedby increasing the number of terms in the approximation. In
addition, the oscillations caused by this phenomenon typically propagate into regions away
from the singularity, and, hence, degrade the quality of the partial-sum approximation in these
regions.

In a series of papers, Gottligdi al. [1-5], have proposed and investigated a way of over-
coming Gibbs’s phenomenon. Their technigue involves the construction of a new series in-
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volving Gegenbauer polynomials. For a functigrthat is analytic on the intervdl1, 1],

but is not periodic, they prove that their technique leads to a series which converges expo-
nentially to g in the maximum norm. Recently, Geer [6] introduced and studied a class of
approximationg Fy ,} to a periodic functiorg which uses the ideas of Padé approximations
based on the Fourier-series representatiop. &ach approximatiorfy ,, is the quotient of

a trigonometric polynomial of degre® and a trigonometric polynomial of degr@é. It was
proven that these ‘Fourier-Padé’ approximations conveajpt-wiseto (g(6%) + g(07))/2

more rapidly (in some cases by a factor ¢fk") than the Fourier-series partial sums on
which they are based. Although these approximationsad@liminate’ Gibbs’s phenomenon,

they do mitigate its effect. In particular, the asymptotic value of the magnitude of the overshoot
is reduced to about 6%and, outside a ‘small’ neighborhood of a point of discontinuity pf

the ‘unwanted’ oscillationsan (for practical purposes) be eliminated. Other techniques, such
as those based on the Lanczos representation of a function, have also been discussegd (see,
Lyness [7]).

More recently, Geer and Banerjee [8] (see, also, Banerjee and Geer [9]) have introduced
a new, simple class of periodic ‘singular basis functiofis,(0)} , which have special ‘built-
in’ singularities. Using knowledge of the locations and magnitudes of the jumpaid its
derivatives, they prove that these functions can be used to construct a sequence of approxi-
mations whichconverges exponentialtp g in the maximum norm. In particular, this implies
that the Gibbs phenomenon can be completely eliminated, even gvhas several points of
discontinuity in the interval—m, ].

The main purpose of this paper is to apply some of the ideas presented by Geer and
Banerjee [8] to a series of model boundary-value problems for Laplace’s equation (Dirichlet
problems), where represents the prescribed (perhaps discontinuous) boundary data for the
problem. (Although the ideas presented here will undoubtedly find applications for boundary-
value problems involving more general elliptic equations, attention is restricted here to
Laplace’s equation, both for simplicity of presentation and for its wide range of applications.)
In Section 2, the results presented in [8] are briefly summarized within the context of the
current application area, and are illustrated by a simple example. In Section 3, the functions
{S.(0)} are regarded as being defined on the boundary of the unit disk, and explicit, closed-
form expressions for their harmonic extensidgpg} into the interior (or exterior) of the disk
are constructed. In Section 4, the functicjgs} are used to construct a very rapidly con-
verging sequence of approximations to the solutioto the Dirichlet problem for a disk,
while, in Section 5, these ideas are extended to annular regions. In each case, it is illus-
trated by examples that the ‘unwanted’ effects of the Gibbs phenomenon are, for all practical
purposes, completely eliminated. In Sections 6 and 7, Dirichlet problems for the half plane
and for rectangular regions are considered, and it is again demonstrated that a new sequence
of approximations can be constructed which essentially eliminates the effects of the Gibbs
phenomenon. The results are discussed in Section 8.

2. Exponentially accurate approximations to discontinuous functions

To fix notation, letg(d) be a Zr-periodic function with enough regularity so that its
Fourier-series partial sums y (6)} converge, adv — oo, to (g(01) + g(07))/2, for every
0el[—m ] ie,
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N
Jm Gy 0) =3 (s +507).  Gy0)=Z +Y_a; cOSj0) +b; Sin(j6),

j=1

a; 1/” cogjo) .
= — 9 d9, :0,1,.... l
(bj> 71 —ng()<sin(j9) ! @

Hereg(6™) (¢(67)) denotes the limit o from the right (left) ay, and both of these limits
are assumed to exist and be finite. K&{[—x, 7] denote the class ofi2periodic functions
that have at leas¥ continuous derivatives op, ]. By repeated use of integration by
parts, it is easy to show that,g§fe CM[—x, ], then the Fourier coefficienta;, b;} of g are
0(1/jM+?) asj — oo (see,e.g, Bary [10], pp. 70—-80). Moreover, j is 27 -periodic and
analyticon [—m, ], then there exists a constamtwith 0 < p < 1, such thatz; andb; are
O(p’), asj — oo (see [10], pp. 80-81). In this case, it follows that the Fourier serigs of
converges exponentially #in the maximum norm.

We shall say thaf, is a point ofsimple discontinuityf g if

[g(60)] = g(6y) —g(6y) #0
and thaty, is a point ofcontact discontinuity of ordey of g if
[¢¥©®0] =0, k=0,1....g—1 and [g9)]#0.

Hereg® denotes thé'" derivative ofg. We call a point wherg has either a simple discon-
tinuity or a contact discontinuity a point sfngularity of the function. (We shall assume that,
at each singularity, the left and right limits of each derivativg ekist and are finite.)

We now assume thgthasn singularities in the interval-r, 71, which lie atf,, 6, ..., 6,,
and we let[g®(#,)], k = 0,1,..., denote the jump in théth derivative ofg at6 = 6.
In [8], a special class of72-periodic basis functionss, (0)}, which have certain ‘built-in’
singularities, were introduced and studied. In particular, it was shown how they could be
used to construct a new sequence of approximations which, although based on the Fourier-
series partial-sum approximations gpconverges exponentially {®in the maximum norm.
In particular, this implies that this new sequence of approximations completely eliminates
Gibbs’s phenomenon. For completeness, we now briefly summarize how these approximations
can be constructed. (See [8] for more details.)

The functiong(S,(9)} are defined by

k=3/2 k1/2 i o
S21(0) = o Sin®) (L — cog9)) H? = ;bzk,j sin(jo), 2
Sa41(0) = 2k;l/z(l — cogo)) /2 = L0y iazk  coS(j6) (3)
k+1 - (2k+1)‘ 2 +1,] ’

j=1
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4k+1 1
k

[[(4j%— (2 +1)?
i=0

’

k+1
ags1; = (=D

bo,j = —jaz1,;, (4)

forj=0,1,2,...,andk =0, 1, 2, .. .. Itis straightforward to show that,(6) is C*[—x, ],

while the jump in itszth derivative ab = 0is 1,i.e,,

(9) dy?’
[S,7(0)] = [(@) Sn(G)]ezo =0,
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Figure 1 The singular basis function§y(9) (solid
line), S1(6) (dashed line), and>(6) (dotted line),
defined in Equations (2)—(3).

3 2 4 0 1 2 3

Figure 3 The approximationg>4 ) (solid line)
from (8), withM = 1 andN = 4, and the magni-
fied error 50 (g(8) — g1¥(0)) (dotted line) for the
example of Section 2.

ifg <n;

[S™(0)] = 1. (5)

Figure 2 The functiong(9) (solid line) from (11), its
Fourier series partial surf11(6) (long dashed line)
from (1) with N = 11, §1(6) (dashed line) from (12),
and the difference(9) — S1(9) (dotted line). Note
that the differenceg(6) — S1(6) is much smoother
than eitherg (9) or S1(6).

Figure 4. A surface plot of the harmonic extension
@o(r, 0) (Equation (14)) ofSp(#) into the interior of
the unit circle.
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1

Figure 5 The approximatiom11(r, ) from (18) with
N = 11 for the example of Section 4.

X

Figure 7. The approximatiom11(r, #) from (25) with
N = 11 for the example of Section 5.

Figure 9 The approximatiom4(x, y) from (41) with
N = 11 for the example of Section 6.

Figure 6 The approximation:®4 (r, 9) from (21)—
(22) with M = 0 and N = 4 for the example of
Section 4.

Figure 8 The approximation: (%% (r, §) from (32)-
(33) with M = 0 and N = 4 for the example of
Section 5.

Figure 1Q The approximatiom -3 (x, y) from (47)—
(48) with M = 0 and N = 3 for the example of
Section 6.
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The functionsSy, S1, andS, are plotted in Figure 1.
To construct a new sequence of approximationg, twe first define

M n
Su@) =" AcsSi0 —6y), (6)

k=0 s=1

where the constan{s\; ;} are determined so that the jumps§m~, and its firstM derivatives,
coincide with the corresponding jumpsgni.e., so thatg(8) — Sy (9) is C¥[—m, ]. Using
the properties (5), we find that these constants can be determined recursively from the relations

=~
[y

Ars = [gP00] =Y A, [S,.(">(0)] . s=12..n k=01.. M )

i

Il
o

Thus, the functior (6) — Sy () is CM[—7, 7], at least, and hence its Fourier series converges
at a faster rate than the Fourier serieg obnceS,,(0) has been defined, we define the family
of approximations ¢-¥} to g by

~(M) N

g ©0) = S (0) + 5=+ > a™ costjo) + 5 sinjo). ®
j=1

M n

af =a; =Y ) Aus far; cosj6,) — by sin(j6,)} . ©)
k=0 s=1
M n

DM =b; = >3 A {ar; sinGios) + by cogjo)}, j=0,12....N,  (10)
k=0 s=1

where it is understood that, ; = O, if n is even, and, ; = O, if n is odd. Here we note
that the partial sum in (8) is just the Fourier-series partial-sum approximation to the difference
g — SM.

The approximationgg™ ™} have several useful convergence properties. In particular, if
we let N be proportional taV/, say, N = AM, for a suitable constarit, then the sequence
{gM-*M)} converges exponentially tg in the maximum norm for alb7r < 6 < =, as
M — oo. As a consequence, this implies that Gibbs’s phenomenon, and its effects, can be
completely eliminateqsee [8]). In additioneach derivative ofg™-*™)} converges expo-
nentially, asM — oo, to the corresponding derivative @fin the maximum norm for all
—rT <0<,

To illustrate these approximations, we let

1 1
EJT’ < X< _ET[’
glx) = X, —%n <x < %n, (11)
1 1
—§7T, EJT <X <T7T,

from whichwe findz; = 0, j > 0, andb; = (—1)//j—(2/j) coS(j/2)+(2/m j?) sin(jr/2),
j = 1. The functiong(9) and its Fourier-series partial su1(0), from (1) with N = 11,
are plotted in Figure 2.
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To construct a ‘better’ approximation g9 we first note thag has three singularities in the
interval (—mr, ], and hence we set= 3, with6, = —x/2, 6, = 7 /2, andf; = =. From the
definition of g and (7), we findAg 1 = —m, Ag2 = —7, Apz =7, A1 =1, A1, =—1, and
A13 = 0. Then, using these values in (6), we define

510) = =7 So(0 + 37) — wSo(0 — 37) + wSo(® — ) + S1(6 + 37) — S1(60 — 7). (12)

The functlonSl(G) and the differencg () — S1(9) are also plotted in Figure 2. Note that,
by the wayS$1(6) has been defined, the differeng®) — S1(9) is C1[—x, 7] and, hence, is
much smoother than the original functigti9). The Fourier coefﬁments{;ajl)} and{bjl)} of

g(0) — 81(9), defined in Equations (9)—(10), are given by

~ imr(2cosjm/2) — (=1)) — 2sin(jx/2
&;1)20’ i>o bj”: jm(2cogjm/ )-2 (-2 ))) n(jm/ )’ is1
wje(4jc—1)

(Note that the coefficienté}l) are 0(1/j3), asj — oo, whereas the original coefficients

are onlyO(1/j), asj — oo). In Figure 3, the approximatiop®#(9) (Equation (8), with

M = 1andN = 4) and the magnified error 59 (g(0) — g>?(0)) are plotted. The figure
clearly illustrates the quality of the approximatigt-#, especially when compared with the
Fourier-series partial surG;; (see Figure 2), even though the latter contains several more
terms.

We now apply some of these ideas to a variety of two-dimensional boundary-value-
problems involving Laplace’s equation. We begin with problems which can be conveniently
expressed in terms of polar coordinates, and then consider problems expressed in terms of
rectangular coordinates.

3. Harmonic extensions of the singular basis function§, (@) into circular domains

We first wish to consider some classes of boundary-value problems for witizhepresents

the boundary data of the problem, defined on the unit circte 1. Since we will be using

the functions{s, (9)} to help construct ‘better’ approximations $@0), and, ultimately, to
construct ‘better’ approximations to the solution to a boundary-value problem, in this section
we construct the harmonic extensipn(r, ) of S, into the interior (or exterior) of the unit
circle. Thus, for the interior probleng, is the solution of the boundary-value problem

V2, (r,0) =0, 0<r<1 0<6<2r, withg,(,0)=S,0).
To construciy,, we first use (2)—(4) to write

2+ > an, coLj6) + by SinG), n=012...,
j=1

S,(0) = 2

and then, for any value of, with 0 < r < 1, we define

@n(r,0) =

.j CO(jO) + b, sin(j6)}

Jtibpw' v, w=re’’, (13)
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Sinces, (9) is piece-wise smooth, the series in (13) converges sufficiently well s&fhat=

0, for0O<r <1, andg, = S,(0) onr = 1. (The analogous expression for the extension of
S, into the exterior of the unit circle, which is boundedras> oo, is given by (13) withr
replaced by 1r.)

Because of the relative simplicity of the coefficiefis ;, b, ;}, it is possible to sum the
series in (13) for any nonnegative integerand, hence, to determine an explicit, closed-form
solution for eachy, (r, #). In particular, using (2)-(4), and (13), we find (usikthematica
[11], p. 104)

wo(r,0) = —% { tanhlf}
1 (1+-~ 1—-r .
= 277{ 7 cos60/2) - AT — 2—ﬁ3|n(9/2)-L}, (14)
2 1-
o1(r, 0) = ;Re{ ﬂw tanhlﬁ}
= i{l_ cog6/2) - L2 tr sin(/2) - AT} (15)
2n | NG
where
AT — <2f3|n(9/2)>’ Lzlog<1+r+2ﬁcos(0/2)).
1—r 1+r—2rcog6/2)

Analogous expressions hold fgy, with n > 2. The functiony, is plotted in Figure 4.

We shall now use the functiorfg, } to construct approximations to two classes of problems
involving Laplace’s equations in regions with circular boundaries, which converge to the exact
solution of the problem much faster than the Fourier-series-type solutions on which they are
based.

4. Dirichlet problem in a disk

We consider first the simple Dirichlet problem forr, 6) given by
VZu=0, 0<r<1 0<6<2n, (16)
u=g@®), onr=1 an

Here the prescribed boundary dgts assumed to havesingularities in the interval-r, ],
which lie at,, 6,, . . ., 6,. A straightforward use of separation of variables leads to the family
of approximate solutions

N
Uy (r, 6) = a—2° +3 1 (a; cosj6) + b, sinGje)), N=1.2,..., (18)
j=1

where{a;, b;} are the Fourier coefficients gfdefined in (1).
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To construct a more rapidly converging sequence of approximations far any non-
negative integetM we first defineS,,(0), given by (6), in terms of the singularities gf
as in Section 2, and then define

M n
Pu(r,0) =YY Acpi(r, 6 —6y). (19)

k=0 s=1

Here the constantsi, ,} are defined in (7) in terms of the singularitiesgofand the harmonic
functions{¢, } are defined in Section 3. In particular, we note that the locations and magnitudes
of the singularities ofp,,(1,60) = Su(6), up to and including thé/th derivative, coincide
with those ofg(9).

We now look for a solution for in the form

u(r,0) = @, (r,0) + v(r, 0), (20)

wherev must be determined. Using Equations (19)—(20) in Equations (16)—(17), we find that
v satisfies

V=0, 0<r<1 0<60<2n1,
with
v=g(@®) — Sy®), onr=1.

We note that the boundary data fois at leasC¥ [, ] and, hence, the Fourier-series-type
solution for v, analogous to (18), will converge faster than the corresponding approximate
solutions{uy} (Equation (18)) foru. Thus, we solve the problem far by separation of
variables and then, for any positive integér we define new approximations™-") for u

as

uMN (i, 0) = @, (r, 0) + VMM (1, 0), (21)
with
&(M) al i M (M) i
p MM (1 9) = 02 4 Zr/ (55_ ) cog(j0) + bﬁ. ) sin(j0)), (22)
j=1

where the coefficientgz (", 5"}, which are defined in (9)-(10), are just the Fourier coef-

ficients ofg(9) — S,,(9). (The corresponding approximations which are valid in the region
exterior to the unit disk, and which remain bounded as oo, are given by (21)—(22), with
r replaced by 1r.)

To illustrate these results, we Igtd) = 6 — &, for 0 < 6 < 2, from which we find
aj =0, j > 0,andb; = —-2/j, j > 1. In Figure 5 we have plotted,, obtained by using
these coefficients in (18) witly = 11. To construct a better approximation:tpwe use the
definition of g to setn = 1, with6; = 0 and[g(61)] = —27. We then seM = 0 in (19) and,
usingAp 1 = —2, from (7), we find

@o(r, 0) = —2m @o(r, 0).
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Then, using (9)—(10), we find

- 2
9 =0 j>0 O=—=  i>1
G=5 I T jaz-y 17

(Note thatb(o) 0(1/j3), asj — oo, whereas the original Fourier coefficients= O(1/),

asj — oo) In Figure 6 we have plotted®# obtained by using these results in Equations
(21)—(22) withM = 0 andN = 4. Figures 5 and 6 illustrate the improved quality of the
approximation:®#, compared ta14. In fact, theL ., norm of the difference — u11 is

lu —urillc = mMax |u(r, 0) —u1a(r,0)| = max |u(l,0) —u1a(1,0)| = 3-14,
0<r<1 0<o<2rn

0goL2r
while

lu — u®? || = 9-46 x 1073,

5. Dirichlet problem in an annular region

We next consider the Dirichlet problem fatr, 6) in an annular region, defined by
Vu=0, O<ri<r<r, 0<6<2n1, (23)
u=g©®), forr=r, and u=g,0), forr=r,. (24)

Here the constants > 0 andr, > r; are specified, and the prescribed boundary gata

and g, are assumed to have singularities in the intervair, 7], which lie at0 = 6,1,

0;2,...,0in, @aNdO = 0,1, 6,2, ...,0,.,,, respectively. Separation of variables leads to the
family of approximate solutions

4 ag — a log(r/r;)
un(r,0) = > + 2 log(r,/ri)

3o (2 ot () oo
~ UJ i rl_2J I\ r rUZJ i riZJ J
b (r”)] o ;b (2 )j ' =\ Gindio) (25)
r rUZJ — r, r r,,Zj — rl.zj / ’
where{a’, b’} and{a$, b9} are the Fourier coefficients gf andg®, respectively.

To construct a ‘better’ approximation tq we follow the ideas of the previous section and
first define the harmonic functions

M

P (r,0) =Y D Ap @i(ri/r,0 —6;), (26)

k=0 s=1
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and

M n,

G, 0) = D AL (/10,0 = 0,,). (27)
k=0 s=1

Here the constant{sA;'{’S} and{Aj ;} are defined by (7) in terms of the singularitiesgbfand

g°, respectively, and the functiorig,} are defined in Section 3. We then look for a solution
for u in the form

u(r, 0) = @iy (r, 0) + g5, (r, 0) + v(r, 0), (28)

wherev satisfies

Vv=0, O<r,<r<r, 0<6<2m, (29)
with

v=1{gi0) — @y (ri,0)} — g3 (ri, 6), onr=r,, (30)
and

v =1{g0(0) — @ (10, 0)} — @iy (0, 6), ONFr =r,. (31)

Thus, we can determinein a straightforward manner, using separation of variables. Here we
note that, in each of the boundary conditions dothe term in brackets on the right side of
each equation i€ [—x, 7], at least, while the last term is analytic for06 < 2. Thus,
the boundary conditions far are much smoother than the corresponding conditions for
and, hence, the solution farobtained by separation of variables will converge much faster
than the corresponding solution fer

Once the functiong), andg¢, have been defined, for any positive integér we define
the new approximations

uMN(r,0) = @, (r,0) + ¢5,(r, 0) + v N (1, 0), (32)

wherev™-V) is a partial-sum approximation tg obtained by separation of variables, and is
given by

ay | ag—ag log(r/r;)

(M,N) _
v r,0) = —+
0 = 2T logruir)
+i 0 (r_o)f s (ﬁ)’ ry) —r? cosj6)
j=1 g r r(?j _rizj g r ’,.3] _rizj !

2j

~(FoNT PP — 7] (T ir¥ g2\ )
+ <bj (%) s+ (+) 2 ) sinie) ;- (33)

T 0 i
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Here, the coefficient&i!, b’} are defined by (see Equations (9)—(10))

M n;

a = a; =Y YA a; co%j6;) — by jsinGio))

k=0 s=1

o

NI M
- (:_l) Z Z AZ,S {ak,j Coqjeo,s) - bk,j Sin(jeu,s)} s

0 k=0 s=1

M n;
b= b =3 AL {a SinGi6i) + br, cOSj6,))
k=0 s=1
i j M ne
B (7) Z Z A} Aax.j Sin(j6,.) + by ; €OKj6,,)} (34)
0/ k=0 s=1

for j = 0,1,2,..., N. The expressions fai/ andlS; are given by (34), withi’, b'] A,
AL ;s Oisy 005, ni, @ndn, replaced byzj, bS, A7 A;'m, 0,5, 0i 5, Ny, andn;, respectively.
To illustrate these results, we let
1, —mw/2<6<m/2,
8i =
-1, n/2<6 <3rn/2,

(35)
, . 4sin(jr/2 .
ay=0, o =22 4o s,
mj
and
g =0—m, 0<0 <2m, aj=0, j=0 bl =-2/j, j=1, (36)

with r; = 1 andr, = 3. In Figure 7 we have plotted; ; obtained by using these coefficients in
(25) with N = 11. To construct a ‘better’ approximation#owe use the definitions @f and

g tofindn; =2, with 6,1 = —/2,[g(0;,1)] = 2,0,2 = 7/2,[g(6;2)] = —2, andn, = 1,
with 6,1, = 0 and g(6,1)] = —2r. We then set¥ = 0 in Equations (26)—(27) and, using
Af 1 =2=—Ap,andA, = —2, from (7), we find

Go(r, 0) = 200(ri /1,0 + 7/2) — 200(r; /1,0 — 7 /2),
Go(r, 0) = =2 @o(r/1,, 0). (37)

Also, from (34) we find

y . 4sinn/2) _ 8j .

l:0’ 14:—, bl-: * - ) 21,

o YT Tia-ap i =ap-1 )

3 _16jsin(jn/2) (r\’ - 2 .

e=0,  ar=d WD (LN e 2 s 38
“o i 7(1—4j2) Yo T j4j2 =1 g (39)
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In Figure 8 we have plotted®# obtained by using (37)—(38) in (32)—(33) wiltf = 0 and
N = 4. One reason for the obvious improvement8f* overu, is the behavior, ag — oo,
of the coefficients defined in (38). In particular, we note that, whereas the original Fourier
coefficients ((35)—(36)) of; andg, are O(1/j), asj — oo, the coefficientsﬁj. and B; are

0(1/j°), while the coefficients’ anda’ are exponentially small, 35— oo.

6. Dirichlet problem in a half space

We now consider two classes of problems that can be expressed conveniently in terms of
rectangular coordinates. In this section, we consider the problem of finding) satisfying

Vou=0 —-00<x <00, y > 0, (39)
with
u=g(x), ony=0, and u— constantasy — oo, (40)

whereg(x) = g(x + 2r) is specified. Separation of variables leads to the representation

u(x,y) = N"Lnoo”"’(x’ y),

N
un(ey) = 3+ Y€ @ Cosjiv) + by sin(jx), N =12.... (41)

j=1

where{a;, b;} are the Fourier coefficients gfdefined in (1).

Following the same ideas as in Sections 3 and 4, in order to find a ‘better’ sequence of
approximations ta¢, we first construct the harmonic extensiangx, y) of S,(x) into the
upper half plane. Using the same reasoning as in Section 3, we find

00
an,0 iy . Lo
(pn(X, )’) = 2 + E e’ {an,j COQ_]X) +bn,j S|n(])€)}
=1
00
an,0 . i _y—ix
= Re 5 + ngl(an,j +ib, Hw’ ¢, w=e’"". (42)

Thus, the closed-form expressions §gKx, y) are given by the corresponding expressions in
(14)—(15) withr replaced by & andé replaced by. In particular,

#ol. ) = %{2 cosfiy/2) cos(x/2) - AT — sinh(y/2)sin(x/2) - L}, (43)
p1(x, y) = %{sinh(y/Z) cos(x/2) - L + 2 coshy/2) sin(x/2) - AT}, (44)
where now
AT = ta (M) L=l (Cosh(y/z) + COS(x/Z))
= sinh(y/2) )’ N coshy/2) — cosx/2) )
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To construct a more rapidly converging sequence of approximatiomsféo any nonneg-
ative integerM we first defineSy,(x) in terms of the singularities qf, as in Section 2, and
then define

M n
G, y) =Y > Apspr(x = xq, ). (45)
k=0 s=1
Here the constantsi, ,} are defined in (7) in terms of the singularitiesgofand the harmonic

functions{gy} are defined by (42).
We now look for a solution for in the form

u(x,y) = @u(x, y) +v(x,y), (46)
wherev satisfies

Vy=0, —-00<x<o00, y >0,
with

v=ygx)—Sy(x), ony=0, andv— constantasy — oo.
Since the boundary data feris at leastC¥[—x, 7], the approximate solutions far ob-
tained by separation of variables, analogous to (41), will converge faster than the corre-

sponding approximate solutiofigy} for u. Thus, for any positive intege¥, we define new
approximations:™-") for u as

with
a X o
v MV (x, y) = 07 +Y e @™ cogjx) + b sin(jx)), (48)
j=1

wherev™-V is a partial-sum approximation ig and the coefficientsc”z;M), E;M)}, which are

defined in (9)—-(10), are just the Fourier coefficientg 6f) — Sy (x).
To illustrate these results, we let

1 1
57, - <Xx < —37,
— _1 1
glx) = X, ST <X < 5T,
1 1
—§7T, EJT <X <T7T,

from whichwe findz; = 0, j > 0, andb; = (—1)//j—(2/j) coS(j/2)+(2/m j?) sin(jr/2),
j = 1. The approximatiomq1(x, y), defined in (41) withV = 11, is plotted in Figure 9. The
oscillations inuq1 near the boundary = 0 due to the discontinuities innare obvious.
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0.1

Figure 11 The approximatiofu11/dx to du/dx, ob-
tained by differentiating (41) wittiv = 11, for the
example of Section 6.

Figure 13 The approximatioru11(x, y) from (52)
with N = 11 for the example of Section 7, with

gL (y) = 0 = gr(y), andgpg(x) and g7 (x) given
by (65)—(66).

0g

Figure 15 The approximatioruq1(x, y) from (52)
with N = 11 for the example of Section 7, with

gL(y) = y— 1= —ggr(y), andgp(x) and g7 (x)
given by (65)—(66).

041

Figure 12 The approximatiordu (%3 /ax to du/dx,
obtained by differentiating:©3 (x, y) from (47)-
(48) with M = 0 and N = 3, for the example of
Section 6.

Figure 14 The approximatiom -3 (x, y) from (63)—
(64) with M = 0 and N = 3 for the example of
Section 7, withg; (y) = 0 = gr(y), andgpg(x) and
g7 (x) given by (65)—(66).

Figure 16 The approximation (%3 (x, y) from (63)—
(64) with M = 0 and N = 3 for the example of
Section 7, withg; (y) = y—1= —gr(y), andgg(x)
andgr (x) given by (65)—(66).
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To construct a better approximationdowe first note thag has three singularities in the
interval (—x, ], and hence we sat = 3, withx; = —n/2, xo, = 7/2, andxz = w. From
the definition Ofg and (7), we ﬁndAoJ = —T, Ao’z = —m, Ao,g =7, Al,l =1, Al,2 = -1,
andA; 3 = 0. Using these values, we can compggéx, y) from (45) with M = 0, and then
u®M(x, y) can be computed from Equations (47)—(48) with= 0. In a similar manner,
we construct:2N) by first computing@ (x, y) from (45) with M = 1, and then computing
u®M(x, y) from (47)—(48) withM = 1. The approximatiom®?, which is plotted in Figure
10, is a definite improvement over the approximatign, even though considerably fewer
terms in the Fourier-series part of the approximation have been used. For this example we find

lu — ur1lloo = 1-57, lu —u®?| =008, and |u—u™?|s = 0-008.

In some applications, it might be of interest to find approximations to various derivatives
of u, as well as tou itself. To illustrate this possibility, the approximatiods,/9x and
du®d /3x to du/dx are plotted in Figures 11 and 12, respectively. In this case, the approx-
imation du11/0x is ‘meaningless’ neay = 0, since the approximation®uy/dx} do not
converge aty = 0. The approximatiordu®® /dx is a definite improvement oveiu1/dx,
while 3u1? /3x is an even better approximationa/dx. For this example, we find

u 9 du  du®?
‘_“_ﬂ ~12.52, ‘_“_ - =~ 0.50,
0x 0X | oo x 0xX |
du  utd
‘ du _ ou = 0.06.
0x 0X |

7. Dirichlet problem in a rectangle

We now consider the problem of finding the functiefx, y) which is harmonic inside a
(finite) rectangular region of the, y-plane, withu specified on the boundary of the rectangle.
Thus, after an appropriate rescaling (if necessarghtisfies the conditions

Vu=0, O<x<um, O<y<c, (49)
with
u(x,0) = gpx), ulx,c) =grx), O<x <m,
B T (50)

u(,y) = gr(y), u(m,y) =gr(y), O<y<c.

Here, the functiongg, g7, g1, andgg, as well as the constaiat where 0< ¢ < oo, are
specified. By superposition, we can write= ™ +1x®, wherex™® satisfies conditions (49)—
(50) with g; = g = 0, andu® satisfies conditions (49)—(50) wihy = g7 = 0. Thus, by a
straightforward change of variables, it is sufficient to consider the problem (49)—(50) in detall
only for the case when

gL(y) = gr(y) =0. (51)
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To begin, we extend the definitions g andgr in anodd, Zr-periodic manneiand then
use separation of variables to find the approximate solutions

sin(jx)
sinh(jc)’

N
un(x,y) =Y _{b] sinh(jy) + b7 sinh(j(c — y))}

j=1

(52)

where{bf} and{bJT} are the Fourier coefficients of (the odds-periodic extensions ofyz
andgr, respectively.

To construct a more rapidly converging sequence of approximatiomswe first find the
harmonic extension of,(x — xo), say, ¢,(x, y; xg), for 0 < x < =m, y > 0, whichalso
satisfies the conditions that it vanishes foe= 0 andx = 7. Here,xq satisfies 0< xo < 7
and represents a point where the boundary gata) and/orgr(x) has a singularity. For
0 < xo < m, using the functiorp, defined in (42), we can easily verify that

Pu(x, y3x0) = @(x —x0, ) + (—=1)"@u(x + x0, ¥)

= Zl;,,,j(xo) eV sin(jx), for0 < xg < m, (53)

j=1
where

A 2 cogjxg)b, ;, neven
by, j(x0) = ) for0 < xg < m, (54)
2 sin(jxo)a, j, nodd,

satisfies the conditions we require @f. Forxg = 0 orxg = 7, we first note that, since the
boundary data has been extended irodd fashion,[g @+ (0)] = 0 = [g%*V ()], where
g denotes eithegp or g7. Thus, for these values af, we only need to defing, for n even,
which we do by the formulas

(X, ¥; X0) = @u(x — x0,¥) = Y _ by j(x0) €7 sin(jx), x0=0,m, (55)
j=1
by j(x0) = COSjxo)b, ;, forxo=0,7, neven (56)

Following the ideas of Section 5, we define the harmonic functions

M np
G, ) =YY AL Gi(x, yixp), (57)
k=0 s=1
and
M nt
G, ¥) =Y > AL Gr(x, ¢ = yixry). (58)
k=0 s=1

In (57)—(58), the constant{s&&,ﬁs} and{A,f’S} are defined by (7) in terms of the singularities
of gg and gr, respectively. Here{xp}, s = 1,2,...,np, and{xr,},s = 1,2,...,nr,
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denote thdocationsof the singularities of (the odd,n2periodic extensions ofyp and g7,
respectively, which lie in the interval & x < =, while the functions{¢,} are defined in
(53)—(56). We then writa as

u(x,y) = @, y) + @y (x, y) + v(x, y), (59)
wherev satisfies

VZu=0, O<x<mn, O<y<ec, (60)
with

v=0, onx=0 and x=7, O<y<c,

v={gp(x) — Py (x,0} — G, (x,0, ony=0, O<x<m, (61)
and
v={gr(x) — @1{4(% o} — @ﬁ(X, ¢), ony=c¢, O<ux<m. (62)

Again we note that, in the boundary conditions (61)-(62), the term in brackets on the right
side of each equation i§Y[—x, ], at least, while the last term is analytic forQx < .
Thus, the solution fop obtained by separation of variables will converge much faster than the
corresponding solution far.

We now solve the problem (60)—(62) forby separation of variables, and then use (59) to
define the new approximatiom$”-") for u as

u™M () =g, ) + @i, y) + MM, y), (63)
where
N sin(jx)
(M,N) — T i . B i .
v (x,y) = ) {b; sinh(jy) +b; sinh(j(c — y)} ==,
; J J sinh(jc)
M np M nr
b8 =08 — "N AF by j(ps) — €Y D" AL by (or), (64)
k=0 s=1 k=0 s=1
M nr M np
BT =0T =3 3" AL by jrg) — €Y S AR by (x ),
k=0 s=1 k=0 s=1

for j =1,2,..., N. Here the coefficient, ; (xo)} are defined in (54) and (56).
To illustrate these results, we set 2 and let

1, O<x<21/3,

= 65
85(x) -1, 2r/3<x<m, (65)
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and

0, O<x<mn/3,
gr(x)=1{1 n/3<x<21/3, (66)
0, 2n/3<x<m,

from which we find

b= 2t (~1) —2co82jn/3). bl = 2 (cosjn/3) — coS2jn/3)).
JT JT
for j > 1. The approximationi1(x, y) which we obtained by inserting these coefficients
into Equation (52) withV = 11 is plotted in Figure 13. The (unwanted) oscillations:in,
particularly near the boundary, due to the discontinuitiegzimndgr, are apparent.

To construct a better approximationitpwe first note that (the odds2periodic extension
of) gz has three singularities in the intenfl, =], while gr has two singularities in this
interval. Hence, we seiy = 3 andny = 2, withxg1 = 0, x> = 27/3, xp3 = 7,
xra1 = 7/3, andxr, = 2m/3. From the definitions ofp and gr, and using (7), we find
Al =2,A8,=-2,Af;=2,A}, = 1,andA], = —1. Using these values in (57)-(58),
we find

@8 (x, y) = 2{@o(x, y; 0) — @olx, y; 27/3) + Po(x, y; 7)),
@ (x,y) = @o(x, c — y; w/3) — Po(x, ¢ — y; 27/3),

wherego(x, y; xo) is defined in (53)—(56) witlk = 0. We then use these expressions, along
with the definitions in (63)—(64), to construct the approximatidh® (x, y), which is plotted

in Figure 14. The higher quality of the approximatief?®, compared ta1, (especially near
the boundary), is obvious, and, in fact, we find

lu —ur1lle =10 and flu —u®?| £ 9-0x 1072, (67)

The solution for the case wheg andgyr are specified, and witggy = gr = 0, can be
obtained from the solution we have just constructed by using the transformations

x—>n—y, y—>n—x, c—>n—, bf—>b§‘, b;—>bf.

C
This solution can then be combined with the solution constructed above to obtain the general
solution when all of the functiongg, g7, g7, andgr are specified, as described at the be-
ginning of this section. To illustrate this technique, wedgtandg; be defined by Equations
(65)—(66), and also let

gL(y) =y —1=—gr(y).

In Figure 15, the approximatiom(x, y) is plotted, while the approximation®? (x, y) is
plotted in Figure 16. In this case, the maximum norm errors are again given by (67).
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8. Discussion

The method presented here appears to provide a practical way to obtain ‘very accurate’ ap-
proximations to the solutiong;, of at least two classes of Dirichlet problems for Laplace’s
equations with discontinuous boundary data. The method is constructive, and only requires a
knowledge of the locations and magnitudes of the discontinuities in the dataedny, the
method can be used to construdegjuence of approximations which converges exponentially

to the solution in the maximum norrfThis follows from the observation that the maximum
absolute value of the harmonic functian- »™-") occurs on the boundary of the domain of
interest, and, on the boundary— u™-¥) = g = g — §); — g™V whereg™-M denotes the

first 2N +1 terms in the Fourier-series representatiop fS,,. From the main result of [8], it
follows that, if we seftvV = A M, wherea is an appropriate positive constant, ttigempproaches

zero exponentially ag/ — oo. Henceu — u™*™) also approaches zero exponentially as

M — oo. See [8] for more details.) In particular, this implies that the (unwanted) effects
of Gibbs phenomenonan be completely overcoina practice the method can be viewed

as one that can provide a ‘very accurate’ approximatiot;"), to u, andu™-" contains
relatively few terms This is the aspect of the method that is illustrated by the examples in the
previous sections.

A special case of the type of problems considered here has been studied by Shi and Hassard
[12]. They consider the case when the domain of interest is the unit square and the boundary
data is expressed in terms of continuous, ‘elementary’ functions. Their technique appears
to involve several more ‘steps’ than the method presented here, and is designed to handle
discontinuities only at the corners of the square. As demonstrated above, the present method
can handle discontinuities along the edges of a square, as well as discontinuities at the corners.

Applications of some of the ideas discussed to the solution of Laplace’s equation in more
general two-dimensional domains (such as multiply connected domains) may also be possi-
ble. For example, Bird and Steele [13] present a solution procedure for the two-dimensional
Laplace’s equation on circular domains with circular holes, and with arbitrary boundary condi-
tions. The ‘interaction’ of the different boundaries is expressed simply and accurately, which
results in an efficient solution algorithm. They assume, in essence, that the boundary data
can be represented as a uniformly convergent Fourier series, and the only simplification they
make is that the boundary data can be ‘accurately’ represented by only a finite number of
terms in the appropriate Fourier series. This assumption will not be valid, of course, if some
of the data is discontinuous. However, for such multiply connected domains, it should be
rather straightforward to combine their ideas with those presented here to construct a solution
algorithm valid for discontinuous boundary data.

Although attention here has been restricted to Laplace’s equation, the basic method will
undoubtedly find application to more general elliptic problems, as well as to other classes
of partial differential equations. For example, the method as described here may be directly
applicable, along with the superposition principle, to boundary value problems which in-
volve equations which contain the Laplacian operator and another linear operator. To see this,
suppose we wish to find satisfying

Viw+Lw)=f, inD, withw=g, o0ndD,

whered® denotes the boundary of the (two-dimensional) donirHere £ is a linear op-
erator,® has either circular or rectangular boundaries (as discussed above) hasdne or
more points of discontinuity of®. We then setv = u + v, whereu satisfies
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V2u=0, in®D, with u=g, ono®D.
Thenv satisfies
Vu+ 8w =f=f—£L8w), in®, withv=0 o0ndD.

The solution for: can be accurately approximated, as described above, while the problem
for v involves homogeneous boundary data (althoyigis some discontinuities @r®). In
particular, if £ involves only derivatives with respect to a variable, or variables, other than
x andy (or r and®), then£(u) = 0 and the problem fop is identical to the problem for
u, except that the boundary data is identically zero. This will be the case, for example, if
L(w) = —wy, or £(w) = —wy,, as in the heat or wave equation, ang it independent of.

In addition, the method may be useful when applied in conjunction with a variety of purely
numerical methods, such as spectral methods, boundary-element methods, or finite-element
methods. For such applications, it is convenient to think of the method as providing a smooth
(analytic) extension of discontinuous boundary data into the interior of the domain of interest.
It might then be possible to write the desired solutisnas a sum of appropriate multiples
of the functionsy, (r, 0) or ¢,(x, y), as defined in Sections 3 and 6, respectively, and a hew
(unknown) functionv, which would satisfy much smoother boundary conditions. Only the
function v would need to be approximated by the numerical method being used.
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